Toward Effective Medical Image Analysis Using Hybrid Approaches—Review, Challenges and Applications

Author:

Bourouis SamiORCID,Alroobaea RoobaeaORCID,Rubaiee Saeed,Ahmed Anas

Abstract

Accurate medical images analysis plays a vital role for several clinical applications. Nevertheless, the immense and complex data volume to be processed make difficult the design of effective algorithms. The first aim of this paper is to examine this area of research and to provide some relevant reference sources related to the context of medical image analysis. Then, an effective hybrid solution to further improve the expected results is proposed here. It allows to consider the benefits of the cooperation of different complementary approaches such as statistical-based, variational-based and atlas-based techniques and to reduce their drawbacks. In particular, a pipeline framework that involves different steps such as a preprocessing step, a classification step and a refinement step with variational-based method is developed to identify accurately pathological regions in biomedical images. The preprocessing step has the role to remove noise and improve the quality of the images. Then the classification is based on both symmetry axis detection step and non linear learning with SVM algorithm. Finally, a level set-based model is performed to refine the boundary detection of the region of interest. In this work we will show that an accurate initialization step could enhance final performances. Some obtained results are exposed which are related to the challenging application of brain tumor segmentation.

Publisher

MDPI AG

Subject

Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Activation-Free Contextual Attention Network for Polyp Segmentation;Information;2023-06-26

2. X-Ray Lung Image Classification Using a Canny Edge Detector;Journal of Electrical and Computer Engineering;2022-10-28

3. A Software for Thorax Images Analysis Based on Deep Learning;Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention;2022-09-09

4. A Comprehensive Study on Various Preprocessing Techniques for brain MRI image;2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC);2022-08-17

5. Review of brain tumor detection from MRI images with hybrid approaches;Multimedia Tools and Applications;2022-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3