Elasto-Plastic Behaviour of Transversely Isotropic Cellular Materials with Inner Gas Pressure

Author:

Xu ,Meng ,Yang ,Zhang ,Fan ,Sun

Abstract

The fabrication process of cellular materials, such as foaming, usually leads to cells elongated in one direction, but equiaxed in a plane normal to that direction. This study is aimed at understanding the elasto-plastic behaviour of transversely isotropic cellular materials with inner gas pressure. An idealised ellipsoidal-cell face-centred-cubic foam that is filled with gas was generated and modelled to obtain the uniaxial stress–strain relationship, Poisson’s ratio and multiaxial yield surface. The effects of the elongation ratio and gas pressure on the elasto-plastic properties for a relative density of 0.5 were investigated. It was found that an increase in the elongation ratio caused increases in both the elastic modulus and yield stress for uniaxial loading along the cell elongation direction, and led to a tilted multiaxial yield surface in the mean stress and Mises equivalent stress plane. Compared to isotropic spheroidal-cell foams, the size of the yield surface of the ellipsoidal-cell foam is smaller for high-stress triaxiality, but larger for low-stress triaxiality, and the yield surface rotates counter-clockwise with the Lode angle increasing. The gas pressure caused asymmetry of the uniaxial stress–strain curve (e.g., reduced tensile yield stress), and it increased the nominal plastic Poisson’s ratio for compression, but had the opposite effect for tension. Furthermore, the gas pressure shifted the yield surface towards the negative mean stress axis with a distance equal to the gas pressure. The combined effects of the elongation ratio and gas pressure are complicated, particularly for the elasto-plastic properties in the plane in which the cells are equiaxed.

Funder

China State Key Laboratory for Strength and Vibration of Mechanical Structures

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3