Legacy of “New Normal” Plastics and “New Nitrogen” in the Cyanotoxin Footprint in Mangrove Ecosystems

Author:

Gunawardana Dilantha1ORCID,Abeysiri Sashika23,Manage Pathmalal23

Affiliation:

1. Independent Researcher, Nugegoda 10250, Sri Lanka

2. Centre for Water Quality and Algae Research, Department of Zoology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka

3. Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka

Abstract

In a paradigm shift in plastic wastes due to the COVID-19 pandemic, wetlands such as mangroves are threatened by a new form of pollution, plastics, on top of the eutrophication of estuarine waters due to nitrogen and phosphorus wastes/effluents that lead to cyanobacterial proliferation. Both plastic and nutrient pollution lead to prosperity of cyanotoxin-producing cyanobacteria that flourish in both and disperse leading to the detriment of fauna and flora in the mangrove ecosystem due to resulting toxicities. Although cyanotoxins are still a relatively poorly studied phenomenon in mangroves, their presence does create a focus of attention due to biofilm formation and the resultant flotation and sinking properties that are linked to cyanobacterial mats on plastic debris. Sri Lanka, being the first country in the world to conserve all its mangrove wetlands, does have a responsibility to prevent the invasion of plastics to this protected ecosystem, and binding with the Ramsar Convention, precluding plastic waste and their concomitant footprint, is a task at hand to the relative authorities. The path ahead mandates that we study the properties of plastics for cyanobacterial proliferation, biofilm formation, the fates of such plastics (flotation, dispersal and sinking), the cyanotoxin production changes that are attributed—or linked—to plastic pollution and the resultant impacts on mangrove ecosystems. Cyanotoxins are long-lived, and it is paramount that we find the necessary mechanisms to eliminate or curtail their production in mangrove ecosystems while establishing surveillance and monitoring of both the producers and the harmful agents. Cyanobacteria although vehicles for nitrogen fixation and replenishing of nutrients to an N-depleted ecosystem such as the mangroves, could lead to enhancements in cyanotoxins production. However, this phenomenon remains ambiguous and poorly studied in applied phycology in relation to mangroves. “New normal” plastics are lodged mostly on the surfaces of bark, prop roots, and pneumatophores, which are the localities where the highest level of new nitrogen is fixed, and this may lead to the proliferation of N-fixing, cyanotoxin-producing cyanobacteria, which may have repercussions on both flora and fauna of mangroves. Therefore, it is crucial that we monitor plastic pollution and find mechanisms for sanitizing plastics-imprinted mangroves to lessen the harmful footprint resulting from plastic overload.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3