Low-Power AlGaN/GaN Triangular Microcantilever for Air Flow Detection

Author:

Uppalapati Balaadithya1ORCID,Gajula Durga2ORCID,Bava Manav3ORCID,Muthusamy Lavanya1,Koley Goutam1

Affiliation:

1. Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA

2. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

3. Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA

Abstract

This paper investigates an AlGaN/GaN triangular microcantilever with a heated apex for airflow detection utilizing a very simple two-terminal sensor configuration. Thermal microscope images were used to verify that the apex region of the microcantilever reached significantly higher temperatures than other parts under applied voltage bias. The sensor response was found to vary linearly with airflow rate when tested over a range of airflow varying from 16 to 2000 sccm. The noise-limited flow volume measurement yielded ~4 sccm resolution, while the velocity resolution was found to be 0.241 cm/s, which is one of the best reported so far for thermal sensors. The sensor was able to operate at a very low power consumption level of ~5 mW, which is one of the lowest reported for these types of sensors. The intrinsic response time of the sensor was estimated to be on the order of a few ms, limited by its thermal properties. Overall, the microcantilever sensor, with its simple geometry and measurement configurations, was found to exhibit attractive performance metrics useful for various sensing applications.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3