Variation in Phytoplankton Community Due to an Autumn Typhoon and Winter Water Turbulence in Southern Korean Coastal Waters

Author:

Baek Seung HoORCID,Lee Minji,Park Bum SooORCID,Lim Young Kyun

Abstract

We evaluated changes in the phytoplankton community in Korean coastal waters during October 2016 and February 2017. Typhoon Chaba introduced a large amount of freshwater into the coastal areas during autumn 2016, and there was a significant negative relationship between salinity and nutrients in the Nakdong estuarine area, particularly in the northeastern area (Zone III; p < 0.001). The abundance of diatom species, mainly Chaetoceros spp., increased after this nutrient loading, whereas Cryptomonas spp. appeared as opportunists when there was relatively low diatom biomass. During winter, biotic and abiotic factors did not differ among the surface, middle, and lower layers (p > 0.01; ANOVA), implying that water mixing by winter windstorms and low surface temperature (due to the sinking of high-density water) physically accelerated mixing of the whole water column. Diatoms predominated under these conditions. Among diatoms, the centric diatom Eucampia zodiacus remained at high density at the inshore area and its abundance had a negative correlation with water temperature, implying that this species can grow at cold temperatures. On the other hand, the harmful freshwater diatom Stephanodiscus hantzschii mainly appeared in conditions with low salinity and high nutrients, implying that it can persist even in the saltwater conditions of the Nakdong Estuary. Our results indicate that hydro-oceanographic characteristics, such as river discharge after an autumn typhoon and winter water turbulence, have major effects on the composition of phytoplankton communities and can potentially affect the occurrence and characteristics of harmful algal blooms in southern Korean coastal waters.

Funder

Korea Institute of Ocean Science and Technology

Ministry of Science, ICT and Future Planning

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3