Soft-Sensing Regression Model: From Sensor to Wafer Metrology Forecasting

Author:

Fan Angzhi1ORCID,Huang Yu2ORCID,Xu Fei3,Bom Sthitie4

Affiliation:

1. Department of Statistics, University of Chicago, Chicago, IL 60637, USA

2. Seagate Technology, Fremont, CA 94538, USA

3. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA

4. Seagate Technology, Bloomington, MN 55435, USA

Abstract

The semiconductor industry is one of the most technology-evolving and capital-intensive market sectors. Effective inspection and metrology are necessary to improve product yield, increase product quality and reduce costs. In recent years, many types of semiconductor manufacturing equipments have been equipped with sensors to facilitate real-time monitoring of the production processes. These production-state and equipment-state sensor data provide an opportunity to practice machine-learning technologies in various domains, such as anomaly/fault detection, maintenance scheduling, quality prediction, etc. In this work, we focus on the soft-sensing regression problem in metrology systems, which uses sensor data collected during wafer processing steps to predict impending inspection measurements that used to be measured in wafer inspection and metrology systems. We proposed a regressor based on Long Short-term Memory network and devised two distinct loss functions for the purpose of the training model. Although the assessment of our prediction errors by engineers is subjective, a novel piece-wise evaluation metric was introduced to evaluate model accuracy in a mathematical way. Our experimental results showcased that the proposed model is capable of achieving both accurate and early prediction across various types of inspections in complicated manufacturing processes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3