Kinetics of Chemisorption on the Surface of Nanodispersed SnO2–PdOx and Selective Determination of CO and H2 in Air

Author:

Vasiliev Alexey1ORCID,Shaposhnik Alexey2ORCID,Moskalev Pavel3ORCID,Kul Oleg4

Affiliation:

1. Department of Natural Sciences and Engineering, Dubna State University, 143407 Dubna, Russia

2. Department of Chemistry, Voronezh State Agrarian University, 394087 Voronezh, Russia

3. Department of Applied Mathematics and Mechanics, Voronezh State Technical University, 394006 Voronezh, Russia

4. C-Component, LLC, 125362 Moscow, Russia

Abstract

In this work, the kinetics and mechanisms of the interaction of carbon monoxide and hydrogen with the surface of a nanosized SnO2–PdOx metal oxide material in air is studied. Non-stationary temperature regimes make it possible to better identify the individual characteristics of target gases and increase the selectivity of the analysis. Recently, chemometric methods (PCA, PLS, ANN, etc.) are often used to interpret multidimensional data obtained in non-stationary temperature regimes, but the analytical solution of kinetic equations can be no less effective. In this regard, we studied the kinetics of the interaction of carbon monoxide and hydrogen with atmospheric oxygen on the surface of SnO2–PdOx using semiconductor metal oxide sensors under conditions as close as possible to classical gas analysis. An analysis of the influence of catalytic surface temperature on the mechanisms of chemisorption processes allowed us to correctly interpret and mathematically describe the electrophysical characteristics of the sensor in the selective determination of carbon monoxide and hydrogen under nonstationary temperature conditions. The reaction mechanism is applied as well to the analysis of the operation scheme of the CO sensor TGS 2442 of Figaro Inc.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3