Cyber-Physical-Social Awareness Platform for Comprehensive Situation Awareness

Author:

Mirza Irfan Baig,Georgakopoulos DimitriosORCID,Yavari AliORCID

Abstract

Cyber-physical-social computing system integrates the interactions between cyber, physical, and social spaces by fusing information from these spaces. The result of this fusion can be used to drive many applications in areas such as intelligent transportation, smart cities, and healthcare. Situation Awareness was initially used in military services to provide knowledge of what is happening in a combat zone but has been used in many other areas such as disaster mitigation. Various applications have been developed to provide situation awareness using either IoT sensors or social media information spaces and, more recently, using both IoT sensors and social media information spaces. The information from these spaces is heterogeneous and, at their intersection, is sparse. In this paper, we propose a highly scalable, novel Cyber-physical-social Awareness (CPSA) platform that provides situation awareness by using and intersecting information from both IoT sensors and social media. By combining and fusing information from both social media and IoT sensors, the CPSA platform provides more comprehensive and accurate situation awareness than any other existing solutions that rely only on data from social media and IoT sensors. The CPSA platform achieves that by semantically describing and integrating the information extracted from sensors and social media spaces and intersects this information for enriching situation awareness. The CPSA platform uses user-provided situation models to refine and intersect cyber, physical, and social information. The CPSA platform analyses social media and IoT data using pretrained machine learning models deployed in the cloud, and provides coordination between information sources and fault tolerance. The paper describes the implementation and evaluation of the CPSA platform. The evaluation of the CPSA platform is measured in terms of capabilities such as the ability to semantically describe and integrate heterogenous information, fault tolerance, and time constraints such as processing time and throughput when performing real-world experiments. The evaluation shows that the CPSA platform can reliably process and intersect with large volumes of IoT sensor and social media data to provide enhanced situation awareness.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3