Recent Advances in Two-Phase Immersion Cooling with Surface Modifications for Thermal Management

Author:

Kang Daehoon,Lee Jooyoung,Chakraborty Anirban,Lee Sang-Eui,Kim Gildong,Yu ChoonghoORCID

Abstract

This paper reviews the major researchers of liquid, immersion, and two-phase cooling. Currently, liquids are used instead of air to cool the growing data centers. Immersion cooling shows a higher heat transfer coefficient than conventional cooling (<37 W/cm2). Because the use of liquids with high global warming potentials is prohibited, the number of liquids that can be used is limited. This paper discusses the existing, relevant literature from researchers who have studied the issue at least thrice. The authors were divided into those who focused on the surface and those who formed a structure on the surface. In summary, the authors suggested the following research directions: The experimental conditions of porous foam are not diverse, and there is a concern about the separation of foam and coating into the tub. The experimental conditions of the immersion tub should also be varied according to the heat and pressure over time. Structure-level research shows higher performance than surface-level research, but an economic feasibility study is required.

Funder

Ministry of Trade, Industry and Energy

Korea Railroad Research Institute

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference73 articles.

1. On Global Electricity Usage of Communication Technology: Trends to 2030;Challenges,2015

2. Uptime Institute (2021, December 13). 2019 Annual Data Center Survey Results. Available online: https://datacenter.com/wp-content/uploads/2019/06/data-center-survey-2019.pdf.

3. A Review on Efficient Thermal Management of Air- and Liquid-Cooled Data Centers: From Chip to the Cooling System;Appl. Energy,2017

4. A Review of Two-Phase Submerged Boiling in Thermal Management of Electronic Cooling;Int. J. Heat Mass Transf.,2020

5. Water Immersion Cooling of High Power Density Electronics;Int. J. Heat Mass Transf.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3