An Improved Finite Control Set Model Predictive Current Control for a Two-Phase Hybrid Stepper Motor Fed by a Three-Phase VSI

Author:

Wang ChunleiORCID,Cao Dongxing,Qu Xiangxu,Fan Chen

Abstract

In this paper, an improved finite control set model predictive current control (FCS-MPCC) is proposed for a two-phase hybrid stepper motor fed by a three-phase voltage source inverter (VSI). The conventional FCS-MPCC selects an optimal voltage vector (VV) from six active and one null VVs by evaluating a simple cost function and then applies the optimal VV directly to the VSI. Though the implementation is simple, it features a large current ripple and total harmonic distortion (THD). The proposed improved FCS-MPCC builds an extended control set consisting of 37 VVs to replace the original control set with only seven VVs. The increase in the amount of VVs helps to regulate the current more accurately. In each control period, the improved FCS-MPCC takes advantage of deadbeat control to calculate a reference VV, and only the three VVs adjacent to the reference VV are predicted and evaluated, which decrease the computational workload significantly. Build waveform patterns for all VVs in the unbalanced circuit structure to modulate the optimal VV using discrete space vector modulation, which improves the current quality in reducing current ripple and THD. The comparative simulations and experimental results validate the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province in China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-Phase Hybrid Stepping Motor Composite Control Strategy Based on New Anti-disturbance Sliding Mode and Model Predictive Control;2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia);2024-05-17

2. Experimental Research on The Influence of Two-dimensional Deployment of Solar Array on SADA Drive Circuit;2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA);2023-08-18

3. Overview of Models and Methods for Control of Stepper Motors;Mekhatronika, Avtomatizatsiya, Upravlenie;2023-07-09

4. SOS-Based Nonlinear Observer Design for Simultaneous State and Disturbance Estimation Designed for a PMSM Model;Sustainability;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3