A Review on Recent Progress in the Integrated Green Hydrogen Production Processes

Author:

Fallah Vostakola MohsenORCID,Salamatinia BabakORCID,Amini Horri BahmanORCID

Abstract

The thermochemical water-splitting method is a promising technology for efficiently converting renewable thermal energy sources into green hydrogen. This technique is primarily based on recirculating an active material, capable of experiencing multiple reduction-oxidation (redox) steps through an integrated cycle to convert water into separate streams of hydrogen and oxygen. The thermochemical cycles are divided into two main categories according to their operating temperatures, namely low-temperature cycles (<1100 °C) and high-temperature cycles (<1100 °C). The copper chlorine cycle offers relatively higher efficiency and lower costs for hydrogen production among the low-temperature processes. In contrast, the zinc oxide and ferrite cycles show great potential for developing large-scale high-temperature cycles. Although, several challenges, such as energy storage capacity, durability, cost-effectiveness, etc., should be addressed before scaling up these technologies into commercial plants for hydrogen production. This review critically examines various aspects of the most promising thermochemical water-splitting cycles, with a particular focus on their capabilities to produce green hydrogen with high performance, redox pairs stability, and the technology maturity and readiness for commercial use.

Funder

Royal Academy of Engineering

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3