Proposal of Agro-Industrial Integration Heat Transport System Using High-Performance Medium for the Realization of a Sustainable Society

Author:

Matsuo SeijiORCID,Suzuki Masaya,Shimazu Teruaki

Abstract

The aim of this study is to propose an agro-industrial heat transport system from industrial to agricultural areas for horticultural facilities with high heat demand to fill the problematic gap in the current heat transport system, and to derive by simulation the conditions under which this system can be used economically as well as environmentally. In this study, HASClay was used as a high-performance medium. HASClay has the ability to supply carbon dioxide (CO2) at the same time as heat and dehumidify the inside of the house, so it can be expected to increase the yield in addition to reducing the environmental load by using heat. The simulation results show that the proposed system of supplying heat to a large greenhouse in HASClay in 20-ton containers would have an economic budget similar to that of the previous system, but with an environmental impact of about 80% less tomatoes and 84% less chrysanthemum fuel than the previous system of heating with fuel oil. On the other hand, the analysis showed that the power of the fan could be reduced as an improvement of the heat transport problem using HASClay. As a countermeasure, the use of natural energy and the change of the fan for heat supply from a damper system to an inverter system to control the air volume were considered. For transport to the 10a scale, which has environmental advantages, a system was proposed in which the heat from the HASClay is divided into mini-tanks and transported to stations envisaged in each region, where it is collected by the agricultural producers. In summary, the authors concluded that our proposal for an agro-industrial fusion system based on the transport of heat using HASClay is an effective method for the realization of a sustainable society. The environmental benefits of the project are likely to attract participation from the industrial sphere in order to meet future demands for CO2 reductions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3