An IOHMM-Based Framework to Investigate Drift in Effectiveness of IoT-Based Systems

Author:

Rocher GéraldORCID,Lavirotte StéphaneORCID,Tigli Jean-YvesORCID,Cotte Guillaume,Dechavanne Franck

Abstract

IoT-based systems, when interacting with the physical environment through actuators, are complex systems difficult to model. Formal verification techniques carried out at design-time being often ineffective in this context, these systems have to be quantitatively evaluated for effectiveness at run-time, i.e., for the extent to which they behave as expected. This evaluation is achieved by confronting a model of the effects they should legitimately produce in different contexts to those observed in the field. However, this quantitative evaluation is not informative on the drifts in effectiveness, it does not help designers investigate their possible causes, increasing the time needed to resolve them. To address this problem, and assuming that models of legitimate behavior can be described by means of Input-Output Hidden Markov Models (IOHMMs), a novel generic unsupervised clustering-based IOHMM structure and parameters learning algorithm is developed. This algorithm is first used to learn a model of legitimate behavior. Then, a model of the observed behavior is learned from observations gathered in the field. A second algorithm builds a dissimilarity graph that makes clear structural and parametric differences between both models, thus providing guidance to designers to help them investigate possible causes of drift in effectiveness. The approach is validated on a real world dataset collected in a smart home.

Funder

H2020 Industrial Leadership

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

1. Ambient assisted living and internet of things;Marques,2019

2. Editorial: Smart Cyber–Physical Systems: Toward Pervasive Intelligence systems

3. What is a complex system?

4. Overview and Challenges of Ambient Systems, towards a Constructivist Approach to their Modelling;Rocher;arXiv,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3