Abstract
Pleiotrophin (PTN) is a neurotrophic factor that participates in the development of the embryonic central nervous system (CNS) and neural stem cell regulation by means of an interaction with sulfated glycosaminoglycans (GAGs). Chondroitin sulfate (CS) is the natural ligand in the CNS. We have previously studied the complexes between the tetrasaccharides used here and MK (Midkine) by ligand-observed NMR techniques. The present work describes the interactions between a tetrasaccharide library of synthetic models of CS-types and mimetics thereof with PTN using the same NMR transient techniques. We have concluded that: (1) global ligand structures do not change upon binding, (2) the introduction of lipophilic substituents in the structure of the ligand improves the strength of binding, (3) binding is weaker than for MK, (4) STD-NMR results are compatible with multiple binding modes, and (5) the replacement of GlcA for IdoA is not relevant for binding. Then we can conclude that the binding of CS derivatives to PTN and MK are similar and compatible with multiple binding modes of the same basic conformation.
Funder
Ministry of Economy, Industry and Competitiveness
Ministry of Science and Innovation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献