Cell Type-Specific Induction of Inflammation-Associated Genes in Crohn’s Disease and Colorectal Cancer

Author:

Saul DominikORCID,Leite Barros Luísa,Wixom Alexander Q.,Gellhaus BenjaminORCID,Gibbons Hunter R.,Faubion William A.,Kosinsky Robyn LauraORCID

Abstract

Based on the rapid increase in incidence of inflammatory bowel disease (IBD), the identification of susceptibility genes and cell populations contributing to this condition is essential. Previous studies suggested multiple genes associated with the susceptibility of IBD; however, due to the analysis of whole-tissue samples, the contribution of individual cell populations remains widely unresolved. Single-cell RNA sequencing (scRNA-seq) provides the opportunity to identify underlying cellular populations. We determined the enrichment of Crohn’s disease (CD)-induced genes in a publicly available Crohn’s disease scRNA-seq dataset and detected the strongest induction of these genes in innate lymphoid cells (ILC1), highly activated T cells and dendritic cells, pericytes and activated fibroblasts, as well as epithelial cells. Notably, these genes were highly enriched in IBD-associated neoplasia, as well as sporadic colorectal cancer (CRC). Indeed, the same six cell populations displayed an upregulation of CD-induced genes in a CRC scRNA-seq dataset. Finally, after integrating and harmonizing the CD and CRC scRNA-seq data, we demonstrated that these six cell types display a gradual increase in gene expression levels from a healthy state to an inflammatory and tumorous state. Together, we identified cell populations that specifically upregulate CD-induced genes in CD and CRC patients and could, therefore, contribute to inflammation-associated tumor development.

Funder

Deutsche Forschungsgemeinschaft

National Institute of Diabetes and Digestive and Kidney Diseases

German Cancer Aid

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3