Effect of Thiouronium-Based Ionic Liquids on the Formation and Growth of CO2 (sI) and THF (sII) Hydrates

Author:

Soromenho Mário R. C.ORCID,Keba Anastasiia,Esperança José M. S. S.ORCID,Tariq MohammadORCID

Abstract

In this manuscript, two thiouronium-based ionic liquids (ILs), namely 2-ethylthiouronium bromide [C2th][Br] and 2-(hydroxyethyl)thiouronium bromide [C2OHth][Br], were tested at different concentrations (1 and 10 wt%) for their ability to affect CO2 (sI) and tetrahydrofuran (THF) (sII) hydrate formation and growth. Two different methods were selected to perform a thermodynamic and kinetic screening of the CO2 hydrates using a rocking cell apparatus: (i) an isochoric pressure search method to map the hydrate phase behavior and (ii) a constant ramping method to obtain the hydrate formation and dissociation onset temperatures. A THF hydrate crystal growth method was also used to determine the effectiveness of the ILs in altering the growth of type sII hydrates at atmospheric pressure. Hydrate–liquid–vapor equilibrium measurements revealed that both ILs act as thermodynamic inhibitors at 10 wt% and suppress the CO2 hydrate equilibria ~1.2 °C. The constant ramping methodology provides interesting results and reveals that [C2OHth][Br] suppresses the nucleation onset temperature and delays the decomposition onset temperatures of CO2 hydrates at 1 wt%, whereas suppression by [C2th][Br] was not statistically significant. Normalized pressure plots indicate that the presence of the ILs slowed down the growth as well as the decomposition rates of CO2 hydrates due to the lower quantity of hydrate formed in the presence of 1 wt% ILs. The ILs were also found to be effective in inhibiting the growth of type sII THF hydrates without affecting their morphology. Therefore, the studied thiouronium ILs can be used as potential dual-function hydrate inhibitors. This work also emphasizes the importance of the methods and conditions used to screen an additive for altering hydrate formation and growth.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3