Glycosylphosphatidylinositol Anchor Biosynthesis Pathway-Related Protein GPI7 Is Required for the Vegetative Growth and Pathogenicity of Colletotrichum graminicola

Author:

Mei Jie,Ning Na,Wu HanxiangORCID,Chen XiaolinORCID,Li Zhiqiang,Liu Wende

Abstract

Glycosylphosphatidylinositol (GPI) anchoring is a common post-translational modification in eukaryotic cells and has been demonstrated to have a wide range of biological functions, such as signal transduction, cellular adhesion, protein transport, immune response, and maintaining cell wall integrity. More than 25 proteins have been proven to participate in the GPI anchor synthesis pathway which occurs in the cytoplasmic and the luminal face of the ER membrane. However, the essential proteins of the GPI anchor synthesis pathway are still less characterized in maize pathogen Colletotrichum graminicola. In the present study, we analyzed the biological function of the GPI anchor synthesis pathway-related gene, CgGPI7, that encodes an ethanolamine phosphate transferase, which is localized in ER. The vegetative growth and conidia development of the ΔCgGPI7 mutant was significantly impaired in C. graminicola. and qRT-PCR results showed that the transcriptional level of CgGPI7 was specifically induced in the initial infection stage and that the pathogenicity of ΔCgGPI7 mutant was also significantly decreased compared with the wild type. Furthermore, the ΔCgGPI7 mutant displayed more sensitivity to cell wall stresses, suggesting that CgGPI7 may play a role in the cell wall integrity of C. graminicola. Cell wall synthesis-associated genes were also quantified in the ΔCgGPI7 mutant, and the results showed that chitin and β-1,3-glucans synthesis genes were significantly up-regulated in ΔCgGPI7 mutants. Our results suggested that CgGPI7 is required for vegetative growth and pathogenicity and might depend on the cell wall integrity of C. graminicola.

Funder

Agricultural Science and Technology Innovation Program (ASTIP) and Pests and Diseases Green Prevention and Control Major Special Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3