Preclinical Evaluation of BMP-9-Treated Human Bone-like Substitutes for Alveolar Ridge Preservation following Tooth Extraction

Author:

Kawecki FabienORCID,Jann Jessica,Fortin Michel,Auger François A.,Faucheux NathalieORCID,Fradette JulieORCID

Abstract

The success of dental implant treatment after tooth extraction is generally maximized by preserving the alveolar ridge using cell-free biomaterials. However, these treatments can be associated with inflammatory reactions, leading to additional bone volume loss hampering dental implant positioning. Our group developed a self-assembled bone-like substitute constituted of osteogenically induced human adipose-derived stromal/stem cells (hASCs). We hypothesized that a bone morphogenetic protein (BMP) supplementation could improve the in vitro osteogenic potential of the bone-like substitute, which would subsequently translate into enhanced alveolar bone healing after tooth extraction. ASCs displayed a better osteogenic response to BMP-9 than to BMP-2 in monolayer cell culture, as shown by higher transcript levels of the osteogenic markers RUNX2, osterix (OSX/SP7), and alkaline phosphatase after three and six days of treatment. Interestingly, BMP-9 treatment significantly increased OSX transcripts and alkaline phosphatase activity, as well as pro-angiogenic angiopoietin-1 gene expression, in engineered bone-like substitutes after 21 days of culture. Alveolar bone healing was investigated after molar extraction in nude rats. Microcomputed tomography and histological evaluations revealed similar, or even superior, global alveolar bone preservation when defects were filled with BMP-9-treated bone-like substitutes for ten weeks compared to a clinical-grade biomaterial, with adequate gingival re-epithelialization in the absence of resorption.

Funder

Quebec Network for cell, tissue, and gene therapy–ThéCell, a thematic network supported by “Fonds de recherche du Québec – Santé”

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3