Transcriptomic Identification of Wheat AP2/ERF Transcription Factors and Functional Characterization of TaERF-6-3A in Response to Drought and Salinity Stresses

Author:

Yu YangORCID,Yu Ming,Zhang Shuangxing,Song TianqiORCID,Zhang Mingfei,Zhou Hongwei,Wang Yukun,Xiang Jishan,Zhang Xiaoke

Abstract

AP2/ERF (APETALA2/ethylene responsive factor) is a family of plant-specific transcription factors whose members are widely involved in many biological processes, such as growth, development, and biotic and abiotic stress responses. Here, 20 AP2/ERF genes were identified based on wheat RNA-seq data before and after drought stress, and classified as AP2, ERF, DREB, and RAV. The analysis of gene structure revealed that about 85% of AP2/ERF family members had lost introns, which are presumed to have been lost during the formation and evolution of the wheat genome. The expression of 20 AP2/ERF family genes could be verified by qRT-PCR, which further supported the validity of the RNA-seq data. Subsequently, subcellular localization and transcriptional activity experiments showed that the ERF proteins were mainly located in the nucleus and were self-activating, which further supports their functions as transcription factors. Furthermore, we isolated a novel ERF gene induced by drought, salt, and cold stresses and named it TaERF-6-3A. TaERF-6-3A overexpression increased sensitivity to drought and salt stresses in Arabidopsis, which was supported by physiological and biochemical indices. Moreover, the expression of stress- and antioxidant-related genes was downregulated in TaERF-6-3A-overexpressing plants. Overall, these results contribute to the further understanding of the TaERF-6-3A gene function in wheat.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Shaanxi Province

Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3