Assessment of Automated Flow Cytometry Data Analysis Tools within Cell and Gene Therapy Manufacturing

Author:

Cheung Melissa,Campbell Jonathan J.,Thomas Robert J.,Braybrook Julian,Petzing JonORCID

Abstract

Flow cytometry is widely used within the manufacturing of cell and gene therapies to measure and characterise cells. Conventional manual data analysis relies heavily on operator judgement, presenting a major source of variation that can adversely impact the quality and predictive potential of therapies given to patients. Computational tools have the capacity to minimise operator variation and bias in flow cytometry data analysis; however, in many cases, confidence in these technologies has yet to be fully established mirrored by aspects of regulatory concern. Here, we employed synthetic flow cytometry datasets containing controlled population characteristics of separation, and normal/skew distributions to investigate the accuracy and reproducibility of six cell population identification tools, each of which implement different unsupervised clustering algorithms: Flock2, flowMeans, FlowSOM, PhenoGraph, SPADE3 and SWIFT (density-based, k-means, self-organising map, k-nearest neighbour, deterministic k-means, and model-based clustering, respectively). We found that outputs from software analysing the same reference synthetic dataset vary considerably and accuracy deteriorates as the cluster separation index falls below zero. Consequently, as clusters begin to merge, the flowMeans and Flock2 software platforms struggle to identify target clusters more than other platforms. Moreover, the presence of skewed cell populations resulted in poor performance from SWIFT, though FlowSOM, PhenoGraph and SPADE3 were relatively unaffected in comparison. These findings illustrate how novel flow cytometry synthetic datasets can be utilised to validate a range of automated cell identification methods, leading to enhanced confidence in the data quality of automated cell characterisations and enumerations.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference39 articles.

1. Guideline on Quality, Non-Clinical and Clinical Requirements for Investigational Advanced Therapy Medicinal Products in Clinical Trialshttps://www.ema.europa.eu/en/guideline-quality-non-clinical-clinical-requirements-investigational-advanced-therapy-medicinal

2. Flow cytometric assays for identity, safety and potency of cellular therapies

3. FDA and NIST collaboration on standards development activities supporting innovation and translation of regenerative medicine products

4. Guidance on the Application of Flow Cytometry for the Cell and Gene Therapy Community. Draft Documenthttps://www.pharmacopoeia.com/bp-consultations/flow-cytometry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3