Practical Improvements to Mean-Variance Optimization for Multi-Asset Class Portfolios

Author:

Lolic Marin1

Affiliation:

1. Independent Researcher, Baltimore, MD 21210, USA

Abstract

In the more than 70 years since Markowitz introduced mean-variance optimization for portfolio construction, academics and practitioners have documented numerous weaknesses in the approach. In this paper, we propose two easily understandable improvements to mean-variance optimization in the context of multi-asset class portfolios, each of which provides less extreme and more stable portfolio weights. The first method sacrifices a small amount of expected optimality for reduced weight concentration, while the second method randomly resamples the available assets. Additionally, we develop a process for testing the performance of portfolio construction approaches on simulated data assuming variable degrees of forecasting skill. Finally, we show that the improved methods achieve better out-of-sample risk-adjusted returns than standard mean-variance optimization for realistic investor skill levels.

Publisher

MDPI AG

Reference20 articles.

1. Machine learning and portfolio optimization;Ban;Management Science,2018

2. Global portfolio optimization;Black;Financial Analysts Journal,1992

3. Sparse and stable Markowitz portfolios;Brodie;Proceedings of the National Academy of Sciences of the United States of America,2009

4. Carrasco, Marine, and Noumon, Neree (2024, January 05). Optimal Portfolio Selection Using Regularization. Working Paper. Available online: https://www.eco.uc3m.es/temp/port8.pdf.

5. Cornuejols, Gerard, Pena, Javier, and Tutuncu, Reha (2018). Optimization Methods in Finance, Cambridge University Press. [2nd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3