Forecasting the Performance of the Energy Sector at the Saudi Stock Exchange Market by Using GBM and GFBM Models

Author:

Alhagyan Mohammed1

Affiliation:

1. Mathematics Department, College of Humanities and Science, Prince Sattam bin Abdulaziz University, Al-Kharj 11912, Saudi Arabia

Abstract

Future index prices are viewed as a critical issue for any trader and investor. In the literature, various models have been developed for forecasting index prices. For example, the geometric Brownian motion (GBM) model is one of the most popular tools. This work examined four types of GBM models in terms of the presence of memory and the kind of volatility estimations. These models include the classical GBM model with memoryless and constant volatility assumptions, the SVGBM model with memoryless and stochastic volatility assumptions, the GFBM model with memory and constant volatility assumptions, and the SVGFBM model with memory and stochastic volatility assumptions. In this study, these models were utilized in an empirical study to forecast the future index price of the energy sector in the Saudi Stock Exchange Market. The assessment was led by utilizing two error standards, the mean square error (MSE) and mean absolute percentage error (MAPE). The results show that the SVGFBM model demonstrates the highest accuracy, resulting in the lowest MSE and MAPE, while the GBM model was the least accurate of all the models under study. These results affirm the benefits of combining memory and stochastic volatility assumptions into the GBM model, which is also supported by the findings of numerous earlier studies. Furthermore, the findings of this study show that GFBM models are more accurate than GBM models, regardless of the type of volatility. Furthermore, under the same type of memory, the models with a stochastic volatility assumption are more accurate than the corresponding models with a constant volatility assumption. In general, all models considered in this work showed a high accuracy, with MAPE ≤ 10%. This indicates that these models can be applied in real financial environments. Based on the results of this empirical study, the future of the energy sector in Saudi Arabia is forecast to be predictable and stable, and we urge financial investors and stockholders to trade and invest in this sector.

Publisher

MDPI AG

Reference38 articles.

1. The effect of incorporating memory and stochastic volatility into geometric Brownian motion in forecasting the performance of Tadawul all share Index (TASI);Abbas;Advances and Applications in Statistics,2022

2. Forecasting exchange rate of SAR/CNY by incorporating memory and stochastic volatility into GBM model;Abbas;Advances and Applications in Statistics,2023

3. Nonparametric estimation of state–price densities implicit in financial asset prices;Lo;The Journal of Finance,1998

4. The effects of incorporating memory and stochastic volatility into GBM to forecast exchange rates of Euro;Alhagyan;Alexandria Engineering Journal,2022

5. Alhagyan, Mohammed Kamel (2018). Modeling Financial Environments Using Geometric Fractional Brownian Motion Model with Long Memory Stochastic Volatility. [PhD. thesis, Universiti Utara Malaysia].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3