Technical Route to Achieve Ultra-Low Emission of Nitrogen Oxides with Predictive Model of Nitrogen Oxide Background Concentration

Author:

Yao Yanfei,Chen Yanxin

Abstract

As the most mature denitration technology in the cement clinker burning process, selective non-catalytic reduction (SNCR) has been unable to meet the requirements of ultra-low nitrogen oxide (NOX) emissions under low ammonia escape, thus a hybrid denitration process based on SNCR was established. The process had three steps: reducing the NOX background concentration (NBC), implementing staged combustion, and optimizing the effect of the SNCR. One of the keys to this process was the real-time acquisition of the NBC. In this paper, a multivariate linear regression model for the prediction of NBC was constructed and applied to one 12,000 t/d production line and one 5000 t/d production line. For the 12,000 t/d production line, NBC had a positive correlation with the temperature of the calciner outlet, the pressure, and the temperature of the kiln hood, and it had a negative correlation with the quantity of the kiln coal, the temperature of the smoke chamber, and the main motor current of the kiln. The influence degree of each parameter on the NBC is gradually weakened according to the above order. The determination coefficient (R2) of the model was 0.771, and the mean absolute error and maximum relative error between the predicted and measured NBC were 6.300 mg/m3 and 18.670 mg/m3 respectively.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference31 articles.

1. Analysis of environmental impact of cement denitrification technology;Liu;China Resour. Compr. Util.,2018

2. Discussion on denitration technology of cement;Chen;Guangdong Build. Mater.,2016

3. SNCR denitration automatic control system’s optimization in guojiawan power plant;Tong;Shenhua Sci. Technol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3