Fundamental Mechanisms for Irradiation-Hardening and Embrittlement: A Review

Author:

Xiao Xiazi

Abstract

It has long been recognized that exposure to irradiation environments could dramatically degrade the mechanical properties of nuclear structural materials, i.e., irradiation-hardening and embrittlement. With the development of numerical simulation capability and advanced experimental equipment, the mysterious veil covering the fundamental mechanisms of irradiation-hardening and embrittlement has been gradually unveiled in recent years. This review intends to offer an overview of the fundamental mechanisms in this field at moderate irradiation conditions. After a general introduction of the phenomena of irradiation-hardening and embrittlement, the formation of irradiation-induced defects is discussed, covering the influence of both irradiation conditions and material properties. Then, the dislocation-defect interaction is addressed, which summarizes the interaction process and strength for various defect types and testing conditions. Moreover, the evolution mechanisms of defects and dislocations are focused on, involving the annihilation of irradiation defects, formation of defect-free channels, and generation of microvoids and cracks. Finally, this review closes with the current comprehension of irradiation-hardening and embrittlement, and aims to help design next-generation irradiation-resistant materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3