Abstract
Remote sensing images have been widely used in many applications. However, the resolution of the obtained remote sensing images may not meet the increasing demands for some applications. In general, the sparse representation-based super-resolution (SR) method is one of the most popular methods to solve this issue. However, traditional sparse representation SR methods do not fully exploit the complementary constraints of images. Therefore, they cannot accurately reconstruct the unknown HR images. To address this issue, we propose a novel adaptive joint constraint (AJC) based on sparse representation for the single remote sensing image SR. First, we construct a nonlocal constraint by using the nonlocal self-similarity. Second, we propose a local structure filter according to the local gradient of the image and then construct a local constraint. Next, the nonlocal and local constraints are introduced into the sparse representation-based SR framework. Finally, the parameters of the joint constraint model are selected adaptively according to the level of image noise. We utilize the alternate iteration algorithm to tackle the minimization problem in AJC. Experimental results show that the proposed method achieves good SR performance in preserving image details and significantly improves the objective evaluation indices.
Funder
the National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献