Abstract
Production and transport of reactive species through plasma–liquid interactions play a significant role in multiple applications in biomedicine, environment, and agriculture. Experimental investigations of the transport mechanisms of typical air plasma species: hydrogen peroxide (H2O2) and ozone (O3) into water are presented. Solvation of gaseous H2O2 and O3 from an airflow into water bulk vs. electrosprayed microdroplets was measured, while changing the water flow rate and applied voltage, during different treatment times and gas flow rates. The solvation rate of H2O2 and O3 increased with the treatment time and the gas–liquid interface area. The total surface area of the electrosprayed microdroplets was larger than that of the bulk, but their lifetime was much shorter. We estimated that only microdroplets with diameters below ~40 µm could achieve the saturation by O3 during their lifetime, while the saturation by H2O2 was unreachable due to its depletion from air. In addition to the short-lived flying microdroplets, the longer-lived bottom microdroplets substantially contributed to H2O2 and O3 solvation in water electrospray. This study contributes to a better understanding of the gaseous H2O2 and O3 transport into water and will lead to design optimization of the water spray and plasma-liquid interaction systems.
Funder
Agentúra na Podporu Výskumu a Vývoja
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
Comenius University grant
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献