C1431T Variant of PPARγ Is Associated with Preeclampsia in Pregnant Women

Author:

Liu FulinORCID,Rouault Christine,Clément Karine,Zhu Wencan,Degrelle Séverine A.ORCID,Charles Marie-Aline,Heude BarbaraORCID,Fournier Thierry

Abstract

Peroxisome proliferator-activated receptor γ (PPARγ) is essential for placental development, whose SNPs have shown increased susceptibility to pregnancy-related diseases, such as preeclampsia. Our aim was to investigate the association between preeclampsia and three PPARγ SNPs (Pro12Ala, C1431T, and C681G), which together with nine clinical factors were used to build a pragmatic model for preeclampsia prediction. Data were collected from 1648 women from the EDEN cohort, of which 35 women had preeclamptic pregnancies, and the remaining 1613 women had normal pregnancies. Univariate analysis comparing preeclamptic patients to the control resulted in the SNP C1431T being the only factor significantly associated with preeclampsia (p < 0.05), with a confidence interval of 95% and odds ratio ranging from 4.90 to 8.75. On the other hand, three methods of multivariate feature selection highlighted seven features that could be potential predictors of preeclampsia: maternal C1431T and C681G variants, obesity, body mass index, number of pregnancies, primiparity, cigarette use, and education. These seven features were further used as input into eight different machine-learning algorithms to create predictive models, whose performances were evaluated based on metrics of accuracy and the area under the receiver operating characteristic curve (AUC). The boost tree-based model performed the best, with respective accuracy and AUC values of 0.971 ± 0.002 and 0.991 ± 0.001 in the training set and 0.951 and 0.701 in the testing set. A flowchart based on the boost tree model was constructed to depict the procedure for preeclampsia prediction. This final decision tree showed that the C1431T variant of PPARγ is significantly associated with susceptibility to preeclampsia. We believe that this final decision tree could be applied in the clinical prediction of preeclampsia in the very early stages of pregnancy.

Funder

China Scholarship Council

Campus France

the European Union FP7 Programme

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3