A Robust and Real-Time Capable Envelope-Based Algorithm for Heart Sound Classification: Validation under Different Physiological Conditions

Author:

Thalmayer Angelika,Zeising Samuel,Fischer GeorgORCID,Kirchner JensORCID

Abstract

This paper proposes a robust and real-time capable algorithm for classification of the first and second heart sounds. The classification algorithm is based on the evaluation of the envelope curve of the phonocardiogram. For the evaluation, in contrast to other studies, measurements on 12 probands were conducted in different physiological conditions. Moreover, for each measurement the auscultation point, posture and physical stress were varied. The proposed envelope-based algorithm is tested with two different methods for envelope curve extraction: the Hilbert transform and the short-time Fourier transform. The performance of the classification of the first heart sounds is evaluated by using a reference electrocardiogram. Overall, by using the Hilbert transform, the algorithm has a better performance regarding the F1-score and computational effort. The proposed algorithm achieves for the S1 classification an F1-score up to 95.7% and in average 90.5%. The algorithm is robust against the age, BMI, posture, heart rate and auscultation point (except measurements on the back) of the subjects.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Generalized Sliding Sinusoidal Transforms;Mathematics;2023-09-06

2. Heartbeat Prediction using Mel Spectrogram and MFCC Value;2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET);2023-05-19

3. Discrete wavelet transform based branched deep hybrid network for environmental noise classification;Computational Intelligence;2023-04-14

4. Research of heart sound classification using two-dimensional features;Biomedical Signal Processing and Control;2023-01

5. Design of a Newborn Congenital Heart Disease Screening Instrument;Applied Physics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3