Region Anomaly Detection via Spatial and Semantic Attributed Graph in Human Monitoring

Author:

Zhang Kang1,Fadjrimiratno Muhammad Fikko1,Suzuki Einoshin2ORCID

Affiliation:

1. Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 8190395, Japan

2. Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 8190395, Japan

Abstract

This paper proposes a graph-based deep framework for detecting anomalous image regions in human monitoring. The most relevant previous methods, which adopt deep models to obtain salient regions with captions, focus on discovering anomalous single regions and anomalous region pairs. However, they cannot detect an anomaly involving more than two regions and have deficiencies in capturing interactions among humans and objects scattered in multiple regions. For instance, the region of a man making a phone call is normal when it is located close to a kitchen sink and a soap bottle, as they are in a resting area, but abnormal when close to a bookshelf and a notebook PC, as they are in a working area. To overcome this limitation, we propose a spatial and semantic attributed graph and develop a Spatial and Semantic Graph Auto-Encoder (SSGAE). Specifically, the proposed graph models the “context” of a region in an image by considering other regions with spatial relations, e.g., a man sitting on a chair is adjacent to a white desk, as well as other region captions with high semantic similarities, e.g., “a man in a kitchen” is semantically similar to “a white chair in the kitchen”. In this way, a region and its context are represented by a node and its neighbors, respectively, in the spatial and semantic attributed graph. Subsequently, SSGAE is devised to reconstruct the proposed graph to detect abnormal nodes. Extensive experimental results indicate that the AUC scores of SSGAE improve from 0.79 to 0.83, 0.83 to 0.87, and 0.91 to 0.93 compared with the best baselines on three real-world datasets.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Modal Self-Supervised Feature Extraction for Anomaly Detection in Human Monitoring;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3