Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach

Author:

Udrea Ioana1,Gheorghe Viorel Ionut1,Dogeanu Angel Madalin2

Affiliation:

1. Department of Mechatronics and Precision Mechanics, Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

2. Faculty of Building Services, Technical University of Civil Engineering Bucharest, 020396 Bucharest, Romania

Abstract

The market for smart greenhouses has been valued at USD 1.77 billion in 2022 and is expected to grow to 3.39 billion by 2030. In order to make this more efficient, with the help of Internet of Things (IoT) technology, it is desired to eliminate the problem of traditional agriculture, which has poor monitoring and accuracy control of the parameters of a culture. Climate control decisions in a greenhouse are made based on parameter monitoring systems, which can be remotely controlled. Instead of this adjustment of the measured parameters, it would be preferable from the point of view of energy consumption that they should be calculated at optimal values from the design phase of the greenhouse. For this reason, it would be better to perform an energy simulation of the greenhouse first. For the study carried out in this work, a small greenhouse (mini-greenhouse) was built. It was equipped with an IoT sensor system, which measured indoor climate parameters and could send data to the cloud for future recording and processing. A simplified mathematical model of the heat balance was established, and the measured internal parameters of the mini-greenhouse were compared with those obtained from the simulation. After validating the mathematical model of the mini-greenhouse, this paper aimed to find the optimal position for placing a normal-sized greenhouse. For this, several possible locations and orientations of the greenhouse were compared by running the mathematical model, with which the most unfavorable positions could be eliminated. Then, some considerably cheaper “mini-greenhouses” were made and placed in the locations with the desired orientations. Using sensor systems and technologies similar to those presented in this work, the parameters from all mini-greenhouses can be monitored in real time. This real-time monitoring allows for the simultaneous analysis of all greenhouses, without the disadvantages of data collection directly in the field, with all data being recorded in the cloud and other IoT-specific advantages being made use of. In the end, we can choose the optimal solution for the location of a real-size greenhouse.

Publisher

MDPI AG

Reference58 articles.

1. Environmental and economic impacts of solar-powered integrated greenhouses;Hollingsworth;J. Ind. Ecol.,2020

2. (2023, June 30). Smart Greenhouse Market. Available online: https://www.vantagemarketresearch.com/industry-report/smart-greenhouse-market-1592.

3. Protected crops—Recent advances, innovative technologies and future challenges;Gruda;Acta Hortic.,2015

4. Estimation regionale des besoins de chauffage des serres;Chiapale;Acta Hortic.,1981

5. Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies;Sethi;Sol. Energy,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3