Assessment of Various Multimodal Fusion Approaches Using Synthetic Aperture Radar (SAR) and Electro-Optical (EO) Imagery for Vehicle Classification via Neural Networks

Author:

Narayanan Ram M.1ORCID,Wood Noah S.1,Lewis Benjamin P.2ORCID

Affiliation:

1. Department of Electrical Engineering, The Pennsylvania State University, University Park, State College, PA 16802, USA

2. Multi-Sensing Knowledge Branch, AFRL/RYAP, U.S. Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA

Abstract

Multimodal fusion approaches that combine data from dissimilar sensors can better exploit human-like reasoning and strategies for situational awareness. The performance of a six-layer convolutional neural network (CNN) and an 18-layer ResNet architecture are compared for a variety of fusion methods using synthetic aperture radar (SAR) and electro-optical (EO) imagery to classify military targets. The dataset used is the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset, using both original measured SAR data and synthetic EO data. We compare the classification performance of both networks using the data modalities individually, feature level fusion, decision level fusion, and using a novel fusion method based on the three RGB-input channels of a residual neural network (ResNet). In the proposed input channel fusion method, the SAR and the EO imagery are separately fed to each of the three input channels, while the third channel is fed a zero vector. It is found that the input channel fusion method using ResNet was able to consistently perform to a higher classification accuracy in every equivalent scenario.

Funder

U.S. Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3