A Review on Nitrogen Flows and Obstacles to Sustainable Nitrogen Management within the Lake Victoria Basin, East Africa

Author:

Masso Cargele1ORCID,Gweyi-Onyango Joseph2ORCID,Luoga Hilda Pius3,Yemefack Martin45ORCID,Vanlauwe Bernard6ORCID

Affiliation:

1. CGIAR, International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709-00100, Kenya

2. Department of Agricultural Science and Technology, Kenyatta University, Nairobi P.O. Box 43844-00100, Kenya

3. Lake Victoria Basin Commission, Kisumu P.O. Box 1510-40100, Kenya

4. Sustainable Tropical Actions (STA), Yaoundé, Cameroon

5. Institute of Agricultural Research for Development (IRAD), BP. 2123, Yaoundé, Cameroon

6. International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria

Abstract

The Lake Victoria Basin (LVB) is located in the upper reaches of the Nile River Basin and is shared by five East-African countries. The population in the catchment is growing rapidly and the lake is facing several environmental problems. During the past few decades, numerous efforts have been made across the five countries, with the coordination of the Lake Victoria Basin Commission (LVBC) to reduce the loading of reactive nitrogen (Nr) into the lake and Lake Watershed. However, most of the measures envisaged to ensure long-term sustainable N management are not as easily adopted as planned. This paper reports on a review study on N flows and obstacles in achieving sustainable N management in the LVB, with the objectives of improving the understanding of the N cycle and examining the N management practices and policies that can help reduce the loss of Nr in the region. The scientific literature related to a range of N flows, N management obstacles, and options to overcome obstacles has been analyzed using N prospects developed at the global level for their potential applicability across the LVB. The study showed that an unbalanced use of N input is a serious threat to agricultural productivity leading to extreme soil N mining and degradation, with the majority of LVB farms operating within negative N balances and above the safe operating boundary for N in production systems. From the projections in N input as recommended by various stakeholders, there would likely be changes in both current yield and N use efficiency (NUE) values; however, most small-scale farmers will continue to experience low yields, which remains a challenge for food security in the area. These results suggest that scientists as well as those involved in decision-making and policymaking processes should formulate new targets for fertilizer increment to reduce the yield gap for sustainability, focusing on more integrated soil fertility as a package for nutrient management in cropping systems.

Funder

Global Environment Facility

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3