Spatiotemporal Analysis of Surface Urban Heat Island Dynamics in Central Yunnan City Cluster

Author:

Fang Qingping1,Liu Chang1,Ren Zhibin2,Fu Yao3,Fan Huapeng1,Wang Yongshu4,Yu Zhexiu5

Affiliation:

1. Faculty of Forestry, Southwest Forestry University, Kunming 650024, China

2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

3. School of Geography and Land Engineering, Yuxi Normal University, Yuxi 653100, China

4. School of Art and Design, Yunnan University, Kunming 650091, China

5. College of Forestry, Beijing Forestry University, Beijing 100083, China

Abstract

The acceleration of urbanization has led to an increase in urban expansion and population density, exacerbating the urban heat island (UHI) effect. Moreover, the phenomenon has a significant impact on urban ecological environments and human health. Consequently, mitigating the UHI effect and enhancing the ecological environment is crucial. However previous research has primarily focused on individual cities or regional scales, with few studies analyzing all cities within urban agglomerations. This paper conducts a fine-grained spatiotemporal analysis of surface urban heat island (SUHI) effects in the Central Yunnan City Cluster from 2000 to 2021 using Landsat satellite data. We calculate the surface urban heat island intensity (SUHII) for 44 cities at the county or district level and discuss the quantitative estimation of overall SUHII changes and driving factors in the Central Yunnan City Cluster. Our findings are as follows: 1. Small cities also exhibit UHI effects, with a 75.4% probability of occurrence in the Central Yunnan City Cluster from 2000 to 2021, resulting in an overall decrease in SUHII of 1.21 °C. 2. The temperature increase rate in urban extension areas and suburban areas is faster than that in urban central areas, which is the main reason for the decreasing trend of SUHII. 3. Land use change inhibits the weakening of the SUHI effect, and population change contributes to the formation of this phenomenon. Additionally, the methods and results of this study can provide reasonable and effective insights for the future development and planning of the Central Yunnan City Cluster, thus promoting urban sustainable development.

Funder

Ten Thousand Talents Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3