Enhancing Water Ecosystem Services Using Environmental Zoning in Land Use Planning

Author:

Anjinho Phelipe da Silva1,Barbosa Mariana Abibi Guimarães Araujo1,Peponi Angeliki234ORCID,Duarte Gonçalo24ORCID,Branco Paulo24ORCID,Ferreira Maria Teresa24ORCID,Mauad Frederico Fábio1ORCID

Affiliation:

1. Center of Water Resources and Environmental Studies, School of Engineering of Sao Carlos, University of Sao Paulo, Sao Carlos 13566-590, SP, Brazil

2. Forest Research Centre, School of Agriculture, University of Lisbon, 1349-17 Lisbon, Portugal

3. Centre of Geographical Studies, University of Lisbon, Rua Branca Edmée Marques, 1600-276 Lisbon, Portugal

4. Associate Laboratory TERRA, 1349-17 Lisbon, Portugal

Abstract

Land use and land cover (LULC) changes alter the structure and functioning of natural ecosystems, impacting the potential and flow of ecosystem services. Ecological restoration projects aiming to enhance native vegetation have proven effective in mitigating the impacts of LULC changes on ecosystem services. A key element in implementing these projects has been identifying priority areas for restoration, considering that resources allocated to such projects are often limited. This study proposes a novel methodological framework to identify priority areas for restoration and guide LULC planning to increase the provision of water ecosystem services (WESs) in a watershed in southeastern Brazil. To do so, we combined biophysical models and multicriteria analysis to identify priority areas for ecological restoration, propose environmental zoning for the study area, and quantify the effects of LULC changes and of a planned LULC scenario (implemented environmental zoning) on WES indicators. Previous LULC changes, from 1985 to 2019, have resulted in a nearly 20% increase in annual surface runoff, a 50% increase in sediment export, a 22% increase in total nitrogen (TN) export, and a 53% increase in total phosphorus (TP) export. Simultaneously, they reduced the provision of WESs (baseflow −27%, TN retention −10%, and TP retention −16%), except for sediment retention, which increased by 35% during the analyzed period. The planned LULC scenario successfully increased the provision of WESs while reducing surface runoff and nutrient and sediment exports. The methodology employed in this study proved to be effective in guiding LULC planning for improving WES. The obtained results provide a scientific foundation for guiding the implementation of WES conservation policies in the studied watershed. This method is perceived to be applicable to other watersheds.

Funder

National Council of Scientific and Technological Development

Coordination for the Improvement of Higher Education Personnel

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3