A Short-Term Air Pollutant Concentration Forecasting Method Based on a Hybrid Neural Network and Metaheuristic Optimization Algorithms

Author:

Jalali Hossein1ORCID,Keynia Farshid1ORCID,Amirteimoury Faezeh2ORCID,Heydari Azim13ORCID

Affiliation:

1. Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran

2. Department of Computer Engineering and Information Technology, Islamic Azad University of Kerman, Kerman 7635131167, Iran

3. Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Rome, Italy

Abstract

In the contemporary era, global air quality has been adversely affected by technological progress, urban development, population expansion, and the proliferation of industries and power plants. Recognizing the urgency of addressing air pollution consequences, the prediction of the concentration levels of air pollutants has become crucial. This study focuses on the short-term prediction of nitrogen dioxide (NO2) and sulfur dioxide (SO2), prominent air pollutants emitted by the Kerman Combined Cycle Power Plant, from May to September 2019. The proposed method utilizes a new two-step feature selection (FS) process, a hybrid neural network (HNN), and the Coot optimization algorithm (COOT). This combination of FS and COOT selects the most relevant input features while eliminating redundant ones, leading to improved prediction accuracy. The application of HNN for training further enhances the accuracy significantly. To assess the model’s performance, two datasets, including real data from two different parts of Combined Cycle Power Plant in Kerman, Iran, from 1 May 2019 to 30 September 2019 (namely dataset A and B), are utilized. Subsequently, mean square error (MSE), mean absolute error (MAE), root mean square deviation (RMSE), and mean absolute percentage error (MAPE) were employed to obtain the accuracy of FS-HNN-COOT. Experimental results showed MSE of FS-HNN-COOT for NO2 ranged from 0.002 to 0.005, MAE from 0.016 to 0.0492, RMSE from 0.0142 to 0.0736, and MAEP from 4.21% to 8.69%. Also, MSE, MAE, RMSE, and MAPE ranged from 0.0001 to 0.0137, 0.0108 to 0.0908, 0.0137 to 0.1173, and 9.03% to 15.93%, respectively, for SO2.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3