Research on Fatigue Characteristics and Prediction of Large-Particle Asphalt Mixtures Based on Four-Point Bending Tests

Author:

Wei Li1,Lv Jinlong2,Rong Hongliu2ORCID,Yang Xiaolong2ORCID

Affiliation:

1. College of Architecture and Civil Engineering, Nanning University, Nanning 541699, China

2. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

Abstract

Large aggregate asphalt mixtures can absorb noise, reduce water damage, effectively improve the service life of roads, and reduce environmental pressure. In this study, the fatigue characteristics of a large-sized asphalt mixture, LSAM-30, were investigated using four-point bending tests. The fatigue performance of LSAM-30 was compared to that of AC-13 and AC-20 asphalt mixtures across a range of temperatures, frequencies, and strains. The results indicated that the temperature, frequency, and strain significantly affect the fatigue performance of LSAM-30. As the temperature or frequency increased, the disparity in the fatigue performances of LSAM-30, AC-13, and AC-20 became more pronounced. Furthermore, the variations in the strain did not exhibit a clear pattern in the fatigue performance ratio among the three asphalt mixtures, with the ratio changes being minor (<5%). Additionally, an exponential-function-based predictive equation was proposed, showing how the fatigue characteristics of LSAM-30 vary with changes in frequency and temperature.

Funder

Guangxi Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3