Affiliation:
1. College of Architecture and Civil Engineering, Nanning University, Nanning 541699, China
2. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
Abstract
Large aggregate asphalt mixtures can absorb noise, reduce water damage, effectively improve the service life of roads, and reduce environmental pressure. In this study, the fatigue characteristics of a large-sized asphalt mixture, LSAM-30, were investigated using four-point bending tests. The fatigue performance of LSAM-30 was compared to that of AC-13 and AC-20 asphalt mixtures across a range of temperatures, frequencies, and strains. The results indicated that the temperature, frequency, and strain significantly affect the fatigue performance of LSAM-30. As the temperature or frequency increased, the disparity in the fatigue performances of LSAM-30, AC-13, and AC-20 became more pronounced. Furthermore, the variations in the strain did not exhibit a clear pattern in the fatigue performance ratio among the three asphalt mixtures, with the ratio changes being minor (<5%). Additionally, an exponential-function-based predictive equation was proposed, showing how the fatigue characteristics of LSAM-30 vary with changes in frequency and temperature.
Funder
Guangxi Natural Science Foundation