Thermal Analysis of Terfenol-D Rods with Different Structures

Author:

Liu Qiang,He Xiping

Abstract

To reduce the heating of the Terfenol-D rod and evaluate its working efficiency, six kinds of Terfenol-D rods were designed, and the temperature field of the rods was simulated and calculated using the finite element method to obtain the temperature distribution. The results showed that the untreated rod had the highest temperature; the temperature was higher in the middle and lower at both ends; higher on the outer diameter surface; and lower on the inside. When compared to the untreated rod, the temperatures of sliced rods and slit rods decreased, and the temperature of sliced rods was lower than that of slit rods; the temperature of slit rods was higher in the middle and lower at both ends; the temperature distribution of sliced rods was more uniform relatively; the slice treatment rod had the lowest temperature and the best heat suppression effect. Three structural rods were chosen and manufactured from a total of six that were tested. It shows that the temperature of all rods was higher in the middle and lower at both ends after 30 min of operation. The actual temperature of untreated rod was 34 °C, the actual temperature of radially slit rod was 32 °C, and the actual temperature of sliced rod at both ends was 28 °C. The tested temperature distributions of three rods agreed with the calculated ones.

Funder

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DYNAMICS OF A THERMOELASTIC ROD UNDER UNSTEADY THERMAL AND FORCE INFLUENCES;Herald of the Kazakh-British technical university;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3