Transformation of Propane over ZnSnPt Modified Defective HZSM-5 Zeolites: The Crucial Role of Hydroxyl Nests Concentration

Author:

Zhou Wei,Liu Jiaxu,Wang Jilei,Lin Long,He Ning,Zhang Xiaotong,Guo Hongchen

Abstract

A series of ZnSnPt supported defective MFI zeolites with different SiO2/Al2O3 ratios (30, 110, 700, and ∞) and hydroxyl nests concentration were prepared and characterized by multiple techniques including scanning electron microscopy (SEM), nitrogen physisorption, NH3-TPD, transmission electron microscopy (TEM), hydrogen temperature programmed reduction (H2-TPR), and Fourier transform infrared spectrometer (FT-IR). It was found that Brønsted acid sites (Si(OH)Al) with strong acid strength and the hydroxyl nests with weak acid strength coexisted over the defective ZSM-5 zeolites and ZnSnPt Lewis acid sites preferentially located on the hydroxyl nests. The increase in the concentration of hydroxyl nests and SiO2/Al2O3 ratios apparently improved the distribution of ZnSnPt Lewis acid sites. The hydroxyl nest incorporated ZnSnPt Lewis acid sites showed extraordinary dehydrogenation ability. Specially, operando dual beam Fourier transform infrared spectrometer (DB-FTIR) was applied to characterize the propane transformation under reaction conditions. At low SiO2/Al2O3 ratios, the propane efficiently transforms into propene and aromatics (total selectivity of 93.37%) by the cooperation of Brønsted acid sites and ZnSnPt Lewis acid sites. While at high SiO2/Al2O3 ratios, the propane mainly transforms into propene (selectivity of above 95%) and hydrogen. This study provides guidance for the preparation of highly efficient propane dehydrogenative transformation catalyst.

Funder

National Natural Science Foundation of China

Joint Fund Project of NSFC-Liaoning Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3