Immobilization of a Novel ESTBAS Esterase from Bacillus altitudinis onto an Epoxy Resin: Characterization and Regioselective Synthesis of Chloramphenicol Palmitate

Author:

Dong Fengying,Tang Xudong,Yang Xiaohui,Lin Lin,He Dannong,Wei Wei,Wei Dongzhi

Abstract

Novel gene estBAS from Bacillus altitudinis, encoding a 216-amino acid esterase (EstBAS) with a signal peptide (SP), was expressed in Escherichia coli. EstBASΔSP showed the highest activity toward p-nitrophenyl hexanoate at 50 °C and pH 8.0 and had a half-life (T1/2) of 6 h at 50 °C. EstBASΔSP was immobilized onto a novel epoxy resin (Lx-105s) with a high loading of 96 mg/g. Fourier transform infrared (FTIR) spectroscopy showed that EstBASΔSP was successfully immobilized onto Lx-105s. In addition, immobilization improved its enzymatic performance by widening the tolerable ranges of pH and temperature. The optimum temperature of immobilized EstBASΔSP (Lx-EstBASΔSP) was higher, 60 °C, and overall thermostability improved. T1/2 of Lx-EstBASΔSP and free EstBASΔSP at 60 °C was 105 and 28 min, respectively. Lx-EstBASΔSP was used as a biocatalyst to synthesize chloramphenicol palmitate by regioselective modification at the primary hydroxyl group. Conversion efficiency reached 94.7% at 0.15 M substrate concentration after 24 h. Lx-EstBASΔSP was stable and could be reused for seven cycles, after which it retained over 80% of the original activity.

Funder

the National Natural Science Foundation of China

the Shanghai outstanding technical leaders plan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3