Author:
Shu Dayu,Wang Li,Chen Qiang,Yao Yi,Li Minghui,Wang Rui
Abstract
The present study evaluated the β recrystallization behavior and deformation microtexture evolution of TB6 titanium alloy (Ti-10V-2Fe-3Al) taking place during isothermal compression. The hot deformation tests were carried out in the temperature range below the β phase transition temperature and spanned a wide strain rate range of 0.0001~1 s−1. Microstructure evolution on β phase, including its recrystallization behavior and microtexture formation, is sensitive to the strain rates, whereas the average grain size of equiaxed α phase exhibits a slight increase with the strain rate decreasing. Moreover, β recrystallization is not homogeneous among the prior β grains, and is characterized by: (I) enriched β sub-grains, (II) sporadically or chain-like distributed recrystallized β grains with a grain size far less than the prior β grains, and (III) wave-shaped β grain boundaries. The β recrystallization is inadequate and its orientation takes on the inheritance characteristic, which makes the β microtexture significant after deformation. At a lower strain rate, the high activity of the {11−2}<111> and {12−3}<111> slip systems induced the crystal rotation around <101>, but such crystal rotation did not destroy the Burgers orientation relationship (BOR), which could be accounted for by the generation of a strong microtexture of <001>//RD. The divergences on β recrystallization fraction, the operation of slip systems, and initial crystal orientations explain the different microtexture components with varied intensities under different deformation conditions.
Funder
National Natural Science Foundation of China
State Key Lab for Advanced Metals and Materials of China
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献