Abstract
This study predicts the behavior of welded plate panels (unstiffened plates) with different geometrical properties (slenderness ratio and aspect ratio) in order to address a rational structural design procedure, as these parameters are of great importance from a structural design perspective. Nonlinear finite element analysis has been used to simulate the butt-welding process of plate panels, giving the three-dimensional distribution of distortion and residual stresses induced by welding through the design of a moving heat source. The numerical results are validated with published experimental measurements. The effect of geometrical properties such as slenderness ratio β and aspect ratio a/b on the creation of welding-induced imperfections (distortion and residual stresses) have been investigated in this work. These geometrical properties influence the creation of the welding-induced imperfections, which in turn affect the load-carrying capacity of the plate panels. Three different plate slenderness ratios with three different aspect ratios have been studied. It is concluded that increasing the plate aspect ratio can highly increase the out-of-plane distortion magnitude as well as the compressive residual stress. The plates with high slenderness ratio (thin thicknesses) are highly affected by increasing plate aspect ratio a/b. As the slenderness ratio β increases, the reduction in the ultimate strength due to the existence of welding-induced imperfections highly decreases. Slenderness ratio β can highly affected the ultimate strength of plates with smaller aspect ratio more than plates with higher aspect ratio.
Subject
General Materials Science,Metals and Alloys