Seismic Experimental Assessment of Remote Terminal Unit System with Friction Pendulum under Triaxial Shake Table Tests

Author:

Kim Sung-WanORCID,Jeon Bub-GyuORCID,Yun Da-Woon,Jung Woo-Young,Ju Bu-Seog

Abstract

In recent years, earthquakes have caused more damage to nonstructural components, such as mechanical and electrical equipment and piping systems, than to structural components. In particular, among the nonstructural components, the electrical cabinet is an essential piece of equipment used to maintain the functionality of critical facilities such as nuclear and non-nuclear power plants. Therefore, damage to the electrical cabinet associated with the safety of the facility can lead to severe accidents related to loss-of-life and property damage. Consequently, the electrical cabinet system must be protected against strong ground motion. This paper presents an exploratory study of dynamic characteristics of seismically isolated remote terminal unit (RTU) cabinet system subjected to tri-axial shaking table, and also the shaking table test of the non-seismically isolated cabinet system was conducted to compare the vibration characteristics with the cabinet system installed with friction pendulum isolator device. In addition, for the shaking table test, two recorded earthquakes obtained from Korea and artificial earthquakes based on the common application of building seismic-resistant design standards as an input ground motions were applied. The experimental assessment showed that the various damage modes such as door opening, the fall of the wire mold, and damage to door lock occurred in the RTU panel fixed on the concrete foundation by a set anchor, but the damage occurred only at the seismic isolator in the seismically isolated RTU panel system. Furthermore, it was considered that the application of the seismic isolator can effectively mitigate the impact and amplification of seismic force to the RTU panel system during and after strong ground motions in this study.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference37 articles.

1. Estimation of seismic demands on acceleration-sensitive nonstructural components in critical facilities;Midanda,2003

2. Efficient Seismic Fragility Analysis for Large-Scale Piping System Utilizing Bayesian Approach

3. Nonstructural Element Resulting from Pohang Earthquake and Direction of Future Seismic Design Nonstructural Elements;Yoon,2018

4. A simplified method for the evaluation of seismic demands on in-cabinet equipment in motor control center type cabinets in nuclear power plants

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3