Thermal Spray Processes in Concentrating Solar Power Technology

Author:

Rubino Felice,Poza Pedro,Pasquino Germana,Carlone PierpaoloORCID

Abstract

Solar power is a sustainable and affordable source of energy, and has gained interest from academies, companies, and government institutions as a potential and efficient alternative for next-generation energy production. To promote the penetration of solar power in the energy market, solar-generated electricity needs to be cost-competitive with fossil fuels and other renewables. Development of new materials for solar absorbers able to collect a higher fraction of solar radiation and work at higher temperatures, together with improved design of thermal energy storage systems and components, have been addressed as strategies for increasing the efficiency of solar power plants, offering dispatchable energy and adapting the electricity production to the curve demand. Manufacturing of concentrating solar power components greatly affects their performance and durability and, thus, the global efficiency of solar power plants. The development of viable, sustainable, and efficient manufacturing procedures and processes became key aspects within the breakthrough strategies of solar power technologies. This paper provides an outlook on the application of thermal spray processes to produce selective solar absorbing coatings in solar tower receivers and high-temperature protective barriers as strategies to mitigate the corrosion of concentrating solar power and thermal energy storage components when exposed to aggressive media during service life.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3