Surface Area of Wood Influences the Effects of Fungal Interspecific Interaction on Wood Decomposition—A Case Study Based on Pinus densiflora and Selected White Rot Fungi

Author:

Fukasawa YuORCID,Kaga Koji

Abstract

Wood decomposer basidiomycetes are the major agents of lignocellulose decomposition in dead wood. As their interspecific interaction affects wood decomposition, difference in interaction area may alter the magnitude of the effects. This study examines the effects of wood surface area on decomposition by interacting basidiomycetes using laboratory incubation experiments with pine sapwood as a model. Two types of pine wood blocks with equal volume but identical surface area were prepared for colonization by one of four white rot basidiomycete species. The colonized wood blocks were then placed on agar media already colonized by the same strain or one of the other species, simulating fungal monoculture and interspecific interactions on wood surface. Results demonstrated that the decay rate of wood was greater in wood with larger surface, and wood decay was accelerated by the interaction of two fungal species in wood with larger surface but not in wood with smaller surface. In contrast, lignin decomposition was influenced by the competitor in wood with smaller surface but not in wood with larger surface. These results suggest that the observed promotion of decay by fungal interspecific interaction might not be attributable to the resource partitioning between fungal species but to the accelerated carbon of competition cost compensation in this case.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference54 articles.

1. A Large and Persistent Carbon Sink in the World’s Forests

2. Carbon fractions in the world’s dead wood

3. Fungal Decomposition of Wood: Its Biology and Ecology;Rayner,1988

4. Wood and Tree Fungi: Biology, Damage, Protection, and Use;Schmidt,2006

5. Climate fails to predict wood decomposition at regional scales

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3