Experimental and Numerical Investigation of the In-Plane Compression of Corrugated Paperboard Panels

Author:

Cillie Johan,Coetzee CornéORCID

Abstract

Finite element analysis (FEA) has been proven as a useful design tool to model corrugated paperboard boxes, and is capable of accurately predicting load capacity. The in-plane deformation, however, is usually significantly underpredicted. To investigate this discrepancy, a panel compression test jig, that implemented simply supported boundary conditions, was built to test individual panels. The panels were then modelled using non-linear FEA with a linear material model. The results show that the in-plane deformation was still underpredicted, but a general improvement was seen. Three discrepancies were identified. The first was that the panels showed an initial region of low stiffness that was not present in the FEA results. This was attributed to imperfections in the panels and jig. Secondly, the experimental results reported a lower stiffness than the FEA. Applying an initial imperfection in the shape of the first buckling mode shape was found to reduce the FEA stiffness. Thirdly, the panels showed a decrease in stiffness near failure, which was not seen in the FEA. A bi-linear material model was investigated and holds the potential to improve the results. Box compression tests were performed on a Regular Slotted Container (RSC) with the same dimensions as the tested panel. The box displaced 13.1 mm compared to 3.5 mm for the panel. There was an initial region of low stiffness, which accounted for 7 mm of displacement compared to 0.5 mm for the panels. Thus, box complexities such as horizontal creases should be included in finite element (FE) models to accurately predict the in-plane deformation, while a bi-linear (or any other non-linear) material model may be useful for panel compression.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Reference37 articles.

1. Allansson, A., and Svärd, B. (2001). Stability and Collapse of Corrugated Board: Numerical and Experimental Analysis. [Master’s Thesis, Lund University].

2. Design of packaging vents for cooling fresh horticultural produce;Pathare;Food Bioprocess Technol.,2012

3. Fadiji, T.S. (2019). Numerical and Experimental Performance Evaluation of Ventilated Packages. [Ph.D. Thesis, Stellenbosch University].

4. Compression strength formula for corrugated boxes;McKee;Paperboard Packag.,1963

5. Schrampfer, K.E., Witsitt, W.J., and Baum, G.A. (1987). Combined Board Edge Crush (ECT) Technology, Institute of Paper Chemistry.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3