Study on the Formation of Complex Chemical Waveforms by Different Computational Methods

Author:

Ai Jiali,Zhai ChiORCID,Sun WeiORCID

Abstract

Chemical wave is a special phenomenon that presents periodic patterns in space-time domain, and the Belousov–Zhabotinsky (B-Z) reaction is the first well-known reaction-diffusion system that exhibits organized patterns out of a homogeneous environment. In this paper, the B-Z reaction kinetics is described by the Oregonator model, and formation and evolution of chemical waves are simulated based on this model. Two different simulation methods, partial differential equations (PDEs) and cellular automata (CA) are implemented to simulate the formation of chemical waveform patterns, i.e., target wave and spiral wave on a two-dimensional plane. For the PDEs method, reaction caused changes of molecules at different location are considered, as well as diffusion driven by local concentration difference. Specifically, a PDE model of the B-Z reaction is first established based on the B-Z reaction kinetics and mass transfer theory, and it is solved by a nine-point finite difference (FD) method to simulate the formation of chemical waves. The CA method is based on system theory, and interaction relations with the cells nearest neighbors are mainly concerned. By comparing these two different simulation strategies, mechanisms that cause the formation of complex chemical waves are explored, which provides a reference for the subsequent research on complex systems.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3