Genesis of Coalbed Methane and Its Storage and Seepage Space in Baode Block, Eastern Ordos Basin

Author:

Chen Hao,Tian Wenguang,Chen Zhenhong,Zhang Qingfeng,Tao Shu

Abstract

The Baode block on the eastern margin of the Ordos Basin is a key area for the development of low-rank coalbed methane (CBM) in China. In order to find out the genesis of CBM and its storage and seepage space in Baode block, the isotopic testing of gas samples was carried out to reveal the origin of CH4 and CO2, as well, mercury intrusion porosimetry, low temperature nitrogen adsorption, and X-ray CT tests were performed to characterize the pores and fractures in No. 4 + 5 and No. 8 + 9 coal seams. The results showed that the average volume fraction of CH4, N2, and CO2 is 88.31%, 4.73%, and 6.36%, respectively. No. 4 + 5 and No. 8 + 9 coal seams both have biogenic gas and thermogenic methane. Meanwhile, No. 4 + 5 and No. 8 + 9 coal seams both contain CO2 generated by coal pyrolysis, which belongs to organic genetic gas, while shallow CO2 is greatly affected by the action of microorganisms and belongs to biogenic gas. The average proportion of micropores, transition pores, mesopores, and macropores is 56.61%, 28.22%, 5.10%, and 10.07%, respectively. Samples collected from No. 4 + 5 coal seams have developed more sorption pores. Meanwhile, samples collected from No. 8 + 9 coal seams exhibited a relatively low degree of hysteresis (Hg retention), suggesting good pore connectivity and relatively high seepage ability, which is conducive to gas migration. The connected porosity of coal samples varies greatly, mainly depending on the relative mineral content and the proportion of connected pores.

Funder

National Natural Science Foundation Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3