Continuum Modelling for Encapsulation of Anticancer Drugs inside Nanotubes

Author:

Alshehri Mansoor H.ORCID

Abstract

Nanotubes, such as those made of carbon, silicon, and boron nitride, have attracted tremendous interest in the research community and represent the starting point for the development of nanotechnology. In the current study, the use of nanotubes as a means of drug delivery and, more specifically, for cancer therapy, is investigated. Using traditional applied mathematical modelling, I derive explicit analytical expressions to understand the encapsulation behaviour of drug molecules into different types of single-walled nanotubes. The interaction energies between three anticancer drugs, namely, cisplatin, carboplatin, and doxorubicin, and the nanotubes are observed by adopting the Lennard–Jones potential function together with the continuum approach. This study is focused on determining a favourable size and an appropriate type of nanotube to encapsulate anticancer drugs. The results indicate that the drug molecules with a large size tend to be located inside a large nanotube and that encapsulation depends on the radius and type of the tube. For the three nanotubes used to encapsulate drugs, the results show that the nanotube radius must be at least 5.493 Å for cisplatin, 6.452 Å for carboplatin, and 10.208 Å for doxorubicin, and the appropriate type to encapsulate drugs is the boron nitride nanotube. There are some advantages to using different types of nanotubes as a means of drug delivery, such as improved chemical stability, reduced synthesis costs, and improved biocompatibility.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3