Non-Sequential Linear Construction Project Scheduling Model for Minimizing Idle Equipment Using Constraint Programming (CP)

Author:

Liu Shu-ShunORCID,Budiwirawan AgungORCID,Arifin Muhammad Faizal Ardhiansyah

Abstract

Over the last several decades, the scheduling of linear construction projects (LCPs) has been explored extensively by experts. The linear scheduling method (LSM), which focuses on work rate and work continuity, has the advantage of tackling LCPs’ scheduling problems. The traditional LSM uses work continuity to monitor resource allocation continuity on the premise that activities with the same type of work use the same crew. However, some LCPs require a combination of different types of equipment to comprise the crew. Sometimes, parts of different crews require the same types of equipment, and sometimes, the same crew requires different equipment configurations. This causes the pattern of work continuity to be different from the pattern of resource allocation continuity. Therefore, we propose an optimization model of the LSM to minimize idle equipment on a non-sequential linear construction project—i.e., a road network maintenance project. This model is intended to minimize the number of idle equipment and their idle time to achieve more efficient scheduling for linear construction projects. This model offers novel details of resource allocation continuity assessment by taking into account equipment combination and configuration (ECC). Therefore, the scheduling concept used by the proposed model is named the linear scheduling model with ECC (LSM–ECC). The model was developed using constraint programming (CP), as CP has good performance and robustness in the optimization field. The model was implemented to a representation of a road network maintenance project and has satisfactory results.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference52 articles.

1. Scheduling: Theory, Algorithms, and Systems;Pinedo,2012

2. Multiresource Leveling in Line-of-Balance Scheduling

3. Space-Time Repetitive Project Scheduling Considering Location and Congestion

4. Optimizations in project scheduling: A state-of-art survey;Wu,2014

5. Optimal Planning and Scheduling for Repetitive Construction Projects

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3