Abstract
Spatial autocorrelation, of which Geary’s c has traditionally been a popular measure, is fundamental to spatial science. This paper provides a new perspective on Geary’s c. We discuss this using concepts from spectral graph theory/linear algebraic graph theory. More precisely, we provide three types of representations for it: (a) graph Laplacian representation, (b) graph Fourier transform representation, and (c) Pearson’s correlation coefficient representation. Subsequently, we illustrate that the spatial autocorrelation measured by Geary’s c is positive (resp. negative) if spatially smoother (resp. less smooth) graph Laplacian eigenvectors are dominant. Finally, based on our analysis, we provide a recommendation for applied studies.
Funder
Japan Society for the Promotion of Science
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献